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ABSTRACT

The assumption when constructing a control chart is that the process parameters, i.e. mean and standard 
deviation, are known. Nevertheless, this assumption is not realistic in practical situations. In most of 
the application of a control chart, the mean and standard deviation are unknown and are estimated from 
an in-control Phase-I samples. When the process parameters are estimated, the control chart performs 
differently compared with the corresponding chart with known process parameters because of the 
variability of estimators. The usual practice to evaluate the performance of a control chart is to use the 
average run length (ARL). The ARL is the average number of samples plotted on a control chart before 
an out-of-control signal is detected. In addition, the expected ARL (EARL) is used as a performance 
measure for the random process mean shift. In this article, the performance of the side sensitive group 
runs (SSGR) chart with known and estimated process parameters are studied and examined in terms of 
ARL and EARL. 
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INTRODUCTION

The control chart was introduced by Walter A. 
Shewhart in 1924 to monitor and determine 
whether a process is in statistical control 
(Montgomery, 2012) and if it is, the process 

is seen as conforming. This indirectly ensures 
the quality of output. Control charts are 
widely used in various fields, for example, 
manufacturing and the service industry. 
Therefore, the control chart has been 
recognised as one of the seven magnificent 
tools in Statistical Process Control (SPC).

The Shewhart chart has been widely used 
to monitor the process. However, the major 
shortcoming of the Shewhart chart is lack 
of sensitivity towards small and moderate 
process mean shifts (Sanusi, Abujiya, Riaz, & 
Abbas, 2017). In view of this, the Shewhart 
chart has been studied extensively to enhance 
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the sensitivity of the control chart towards small and moderate process mean shift. For example, 
synthetic chart (Wu & Spedding, 2000a), group run (GR) chart (Gadre & Rattihalli, 2004) and 
side sensitive group run (SSGR) chart (Gadre & Rattihalli, 2007). 

An indispensable assumption when designing a control chart is that process parameters, 
such as the mean and the standard deviation, are assumed known (Chen, Birch, & Woodall, 
2016). However, in many applications of the control chart, the process parameters are unknown. 
Thus, the process parameters are usually estimated from an in-control Phase-I samples. Woodall 
and Montgomery (1999, 2014) pointed out that when the process parameters are estimated, 
the performance of the control chart will differ from the known process parameters case due 
to estimation error. Therefore, Psarakis, Vyniou and Castagliola (2014) emphasised that it is 
essential to study the performance of a control chart when process parameters are unknown. 
Jensen, Jones-Farmer, Champ and Woodall (2006), Saleh, Mahmoud, Jones-Farmer, Zwetsloot 
& Woodall (2015), You, Khoo, Castagliola and Ou, (2015) and Shepherd, Champ and Rigdon 
(2016), to name a few, examined the performance of control charts with unknown process 
parameters.

The performance of a control chart is an important characteristic to consider because it 
influences the decision on the use of the control chart. A well-known and common performance 
measure is average run length (ARL) (Chakraborti, 2007). The ARL indicates, on the average, 
how many samples need to be plotted before an out-of-control signal is detected. The 
computation of the ARL is based on the particular mean shift provided.

Nevertheless, there are situations when the practitioner is unable to identify the shift of a 
process (Teoh, Chong, Khoo, Castagliola, & Yeong, 2017). Moreover, the practitioners may 
not have historical knowledge or experience on the process to determine the shift of a process 
(Castagliola, Celano, & Psarakis, 2011). Determining the particular mean shift will result in 
decision inaccuracy of the process if a different mean shift occurs in the process. In view of 
this, expected average run length (EARL) is introduced in this paper to evaluate and design the 
SSGR chart. The EARL is obtained by integrating over the density function of the shift size. 

In this paper, the SSGR chart with estimated process parameters will be investigated 
when the process mean shift is random. Moreover, the performance of the control chart will 
be compared with the particular process mean shift for the known and estimated process 
parameters case. This approach is to convince the practitioners to implement EARL when the 
shift size may not be known in advance.

METHODS

The SSGR chart developed by Gadre and Rattihalli (2007) comprises a Shewhart sub-chart and 
an extended version of the conforming run length (CRL) sub-chart. The Shewhart sub-chart 
is designed with two control limits, the LCL and UCL. Meanwhile, the CRL sub-chart has a 
single control limit, L, which is a specified positive integer.

The operation of the SSGR chart is explained as follows:

(1) When a sample falls below the LCL or above the UCL, the SSGR chart indicates this is a 
nonconforming sample.
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(2) Further investigation using the CRL sub-chart is necessary to determine the state of the 
process.

(3) The rth CRL value will be computed, i.e. CRLr, for r = 1, 2, … is denoted as the number 
of conforming samples plotted on the Shewhart sub-chart between the rth and (r-1)th 
nonconforming samples.

(4) The SSGR chart declares an out-of-control if

(i) CRL1 ≤ L or

(ii) CRLr ≤ L and CRLr+1 ≤ L, for r = 2, 3, … and that both CRLr and CRLr+1 fall on the 
same side of the Shewhart sub-chart.

It should be emphasised that when a sample falls outside the control limits of the Shewhart 
sub-chart, the SSGR chart does not signal an out-of-control status immediately. Instead, it just 
indicates a nonconforming sample. Further investigation using the CRL sub-chart is required 
before an out-of-control status is signalled.

When the process parameters are assumed known, the LCL and UCL are

                    [1]

and

                    [2]

where H is the design constant. The probability of a conforming sample on the Shewhart sub-
chart is  i.e.

                  [3]

Following simplification, A reduces to 

                  [4]

Here,  is the standard normal cumulative distribution function (cdf).

Let B denote the probability that a sample on the Shewhart sub-chart is nonconforming, i.e.

                   [5]

In addition, the probability of an event CRLr ≤ L is

                     [6]
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Also, the conditional probability k =  for taking into account 
the side sensitivity aspect is

                  [7]

Finally, the ARL formula for the SSGR chart is (Gadre & Rattihalli, 2007)

                   [8]

The evaluation using ARL requires the shift size to be determined in advance. Unfortunately, 
this is not a practical situation. Therefore, the EARL can be employed in place of the ARL. 
The EARL is computed as

                    [9]

It is the expected value of the ARL integrated over the density function,fδ(δ) of the mean shift 
size in the process, i.e. δ. In this paper, two interval combinations of random shift sizes are 
set:(δmin, δmax) = (0.1,1.0) and (δmin, δmax) = (1.0,2.0), to evaluate the performance of the SSGR 
chart. 

In a real situation, the process parameters are rarely known. Hence, the process parameters are 
usually estimated from m in-control Phase-I samples with each of size n. An estimator of μ0 is

                   [10]

and an estimator of  is 

                 [11]

where the sample mean is 

Based on the estimated process parameters, i.e.  and  from the Phase-I parameter estimation, 
the LCL and UCL are

                   [12]

and

                   [13]
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respectively, with  being the design constant for the Shewhart sub-chart with estimated 
process parameters. Let  represent the probability that a sample is conforming on the Shewhart 
sub-chart and is computed as

                [14]

By defining  and , the Equation [14] simplifies to (You, Khoo, 

Castagliola, & Ou, 2015)

               [15]

Because , it can be deduced that . Then, the probability density 

function (pdf) of V is

                  [16]

where fN is the pdf of the normal distribution with mean 0 and variance . According to Zhang, 

Castagliola, Wu and Khoo (2011), it can be shown that . 

Hence, the pdf of W is

                [17]

where fγ is the pdf of the gamma distribution with parameters  and 

The probability that a sample is nonconforming on the Shewhart sub-chart is

                    [18]

In a similar manner, the probability of an event CRLr ≤  and the conditional probability, 
 are

                 [19]
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and

                 [20]

respectively, with  being the control limit of the CRL sub-chart with estimated process 
parameters.

Finally, the ARL of the SSGR chart with estimated process parameters is

              [21]

Furthermore, the EARL of the SSGR chart with estimated process parameters is

               [22]

where ARL can be obtained from Equation (8) by replacing B, C and k with , and , 
respectively.

RESULTS AND DISCUSSION

Table 1 presents the ARL performance for the SSGR chart. Let ARL0 and ARL1 represent the 
in-control ARL and out-of-control ARL respectively. For comparison purposes, we include 
computations of ARL1s for the known process parameters chart and denote it as m = +∞. 
Meanwhile, m = {30, 50, 80, 200, 500} represents the cases when process parameters are 
estimated. 

Different  combinations  of  number  of  in-control  Phase-I  samples, 
, sample sizes,  and process mean shift sizes, 
are considered in Table 1. The results of in columns 4 – 9 are 

evaluated using the optimal pair (H, L) of the chart with known process parameters, i.e. the 
optimal pair (H, L) displayed in column 3. The optimal pair (H, L) will give an intended ARL0 

= 370.4 when δ = 0 for m = +∞.
For example, when n = 5, δ = 0.3, the optimal pair for minimising ARL1 is (H, L) = (2.2515, 

22), for the SSGR chart with known process parameters (m = +∞). The corresponding smallest 
ARL1 = 32.13 is obtained while achieving the desired ARL0  = 370.4 when m = +∞. This 
optimal pair yields  for 
. Note that when the process parameters are estimated from a small Phase-I samples, i.e. m = 
30 with each of size n = 5, the corresponding ARL1 (=60.59) differs from the ARL1 (=32.13) 
when process parameters are assumed to be known. This shows that the performance of the 
SSGR chart deteriorates significantly when the process parameters are estimated due to the 
effect of parameter estimations. Nevertheless, when m = 200, the corresponding ARL1 (=34.82) 
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is almost similar to the ARL1 when process parameters are known. These results reveal that 
more than 80 samples are required for the SSGR chart with estimated process parameters to 
perform satisfactorily with the same chart with known process parameters. 

Table 1 
ARL1s  for n = {3, 5, 7, 9} with different combinations of (m, δ), based on the optimal pair (H, L) 
corresponding to the known process parameters case when ARL0 = 370.4 

n δ (K, L) m
30 50 80 200 500 + ∞ 

3 0.1 (2.4913, 63) 1425.24 635.25 439.44 319.14 283.85 263.24
0.3 (2.3250, 30) 228.44 119.80 89.01 68.97 62.95 59.41
0.7 (1.9948, 8) 8.72 7.46 6.92 6.48 6.32 6.22
1.1 (1.8025, 4) 2.20 2.12 2.08 2.05 2.03 2.02
1.5 (1.5953, 2) 1.28 1.27 1.26 1.25 1.25 1.25
2.0 (1.5953, 2) 1.04 1.04 1.04 1.03 1.03 1.03

5 0.1 (2.4696, 57) 439.47 327.96 281.04 241.28 226.77 217.43
0.3 (2.2515, 22) 60.59 45.72 39.65 34.82 33.16 32.13
0.7 (1.8660, 5) 3.57 3.39 3.30 3.21 3.18 3.16
1.1 (1.7185, 3) 1.36 1.35 1.34 1.33 1.33 1.33
1.5 (1.5953, 2) 1.05 1.05 1.05 1.04 1.04 1.04
2.0 (1.5953, 2) 1.00 1.00 1.00 1.00 1.00 1.00

7 0.1 (2.4537, 53) 299.81 248.96 223.56 199.29 189.72 183.38
0.3 (2.1886, 17) 31.74 26.22 23.78 21.72 20.99 20.52
0.7 (1.8025, 4) 2.29 2.23 2.20 2.17 2.15 2.15
1.1 (1.5953, 2) 1.14 1.13 1.13 1.13 1.12 1.12
1.5 (1.5953, 2) 1.01 1.01 1.01 1.01 1.01 1.01
2.0 (1.5953, 2) 1.00 1.00 1.00 1.00 1.00 1.00

9 0.1 (2.4364, 49) 238.61 205.82 187.80 169.55 162.16 157.23
0.3 (2.1401, 14) 20.21 17.47 16.21 15.11 14.72 14.46
0.7 (1.7185, 3) 1.76 1.73 1.71 1.69 1.69 1.68
1.1 (1.5953, 2) 1.06 1.05 1.05 1.05 1.05 1.05
1.5 (1.5953, 2) 1.00 1.00 1.00 1.00 1.00 1.00
2.0 (1.5953, 2) 1.00 1.00 1.00 1.00 1.00 1.00

In a real application, practitioners may not know the shift size in advance. Hence, if a 
practitioner considers a particular shift size, δ  and employs the corresponding optimal pair, the 
performance of the SSGR chart will be significantly affected if a different shift size actually 
occurs in the process. In view of this, EARL is crucial to adopt in place of ARL for designing 
and evaluating the SSGR chart.

The EARL0 and EARL1 denote the in-control and out-of-control EARL respectively. Table 
2 displays the EARL1  computed using the same (m, n) combinations considered in Table 1. 
The shift interval (δmin, δmax) = (0.1, 1.0) and (δmin, δmax) = (1.0, 2.0) are considered here, so that 
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it includes the exact shifts in the Table 1. For instance, the shift interval (δmin, δmax) = (0.1, 1.0) 
includes the shifts . Similarly,  = (1.0, 2.0) in Table 2 is considered 
to include δ = {1.1,1.5,2.0).

Table 2 
EARL1s for n = {3, 5, 7, 9} with Different Combinations of (m, δmin, δmax), based on the optimal pair (H, L) 
corresponding to the known process parameters case when EARL0 = 370.4 

n δmin δmax (K, L) m
30 50 80 200 500 + ∞ 

3 0.1 1.0 (2.2821, 25) 143.27 81.67 62.56 49.33 45.17 42.69
1.0 2.0 (1.7185, 3) 1.47 1.44 1.43 1.42 1.41 1.41

5 0.1 1.0 (2.2515, 22) 50.03 39.14 34.28 30.09 28.58 27.62
1.0 2.0 (1.5953, 2) 1.12 1.12 1.11 1.11 1.11 1.11

7 0.1 1.0 (2.2403, 21) 31.56 26.43 23.89 21.57 20.70 20.13
1.0 2.0 (1.5953, 2) 1.04 1.04 1.04 1.04 1.04 1.04

9 0.1 1.0 (2.2159, 19) 23.01 19.83 18.18 16.63 16.03 15.65
1.0 2.0 (1.5953, 2) 1.02 1.01 1.01 1.01 1.01 1.01

For illustration, when n = 3, δmin = 0.1 and δmax =1.0 , the optimal pair (H, L) = (2.2821, 25) 
yields the smallest EARL1 = 42.69 when the process parameters are known. Meanwhile, this 
optimal pair (H, L) produces the intended EARL0 = 370.4. However, the EARL1 are 143.27, 
81.67, 62.56, 49.33 and 45.17 for m = 30, 50, 80, 200 and 500, respectively. Comparing 
these with EARL1 when process parameters are known (i.e. EARL1 = 42.96), the EARL1 

values for the SSGR chart with estimated process parameters are significantly larger than the 
corresponding value of the same chart with known process parameters, especially when m 
is small. This provides clear insight that the EARL1 value of the SSGR chart with estimated 
process parameters converge to the known process parameters case when m increases. This 
phenomenon of the SSGR chart is similar to that presented in Table 1 when ARL1 is employed 
as a performance measure.

Furthermore, it is observed that the ARL1 values computed using the optimal pair (H, L) 
for minimising EARL1 in Table 2 are quite similar to the ARL1 values computed using the 
optimal pair (H, L) for minimising ARL1 in Table 1, as long as .

For instance, when n = 5, δmin = 0.1 and δmax = 1.0  the optimal pair (H, L) = (2.2515, 
22) and the  corresponding  EARL1  =  27.62  when  m = +∞. By considering δ = 0.7 (i.e. 

), the ARL1 values are computed as 4.43, 4.27, 4.19, 4.12, 4.09 and 4.08 for m 
= 30, 50, 80, 200, 500 and +∞ using (H, L) = (2.2515, 22). These ARL1 values are quite similar 
to those in Table 1 when n = 5 and δ = 0.7, although the optimal pair (H, L) are different. In 
Table 1, when n = 5 and  δ = 0.7, the optimal pair is (H, L) = (1.8660, 5). This suggests that 
the optimal pair (H, L)  obtained  by  minimising  EARL1  is  reliable  to  compute  the  ARL1,  
as  long  as  . Note that the application of EARL1 is more reasonable because 
practitioners may not have knowledge or experience to determine the exact process shift. 
Moreover, practitioners may not know the particular process shift that will occur in the process. 
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CONCLUSION

In summary, measures like ARL require practitioners to determine the exact shift size. In 
practical application, the particular shift size is usually unknown in advance. Hence, in this 
paper, the SSGR chart is designed to minimise EARL1 when process parameters are known. The 
results reveal the optimal pair (H, L) obtained by minimising EARL1 when process parameters 
are known can be used to compute ARL1, as long as .

Moreover, the study results indicate that a large number of Phase-I samples are required 
for the SSGR chart with estimated process parameters to perform favourably compared with 
the same chart with known process parameters case. This study can be extended to propose the 
optimal pair by minimising EARL1 for the SSGR chart when process parameters are estimated. 
Furthermore, the expected value of the summary measure can be examined, for example, the 
expected value for percentile, when the exact shift size is unknown in advance. 
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